
Ames
Research
Center

IDEA: Intelligent Distributed Execution
Architecture

PI: Nicola Muscettola
Team Members: Chuck Fry, Rich Levinson, Chris Plaunt,
Greg Dorais, Vijai Baskaran, Felix Ingrand (LAAS/CNRS),
Mary Bernardine Dias (CMU), Solange Lemai (LAAS/CNRS)

NASA Ames Research Center

Ames
Research
Center

NASA Relevance:
• Software architecture for real-time autonomous systems is key to

robust autonomous planetary explorers (Mars Exploration, Europa
Lander, Titan aerobot)

• Distributed nature of architecture supports multi-spacecraft missions
(earth observing, formation flying interferometry)

• Potentially usable as well-founded fault-protection engine in
traditional flight software

Accomplishments to date:
• Full implementation of IDEA architecture
• Identified basic services that are planning technology independent
• Several multi/single agent applications programmed in IDEA

• Planner and Executive layers for Remote Agent
• DS1 launch sequence
• K9 on board rover controller

Intelligent Distributed Execution Architecture (IDEA)Intelligent Distributed Execution Architecture (IDEA)
Nicola Muscettola, NASA AmesNicola Muscettola, NASA Ames

Problem: Advanced autonomous agents are traditionally multi-
layered with each layer using different technology with different
semantics. This increases software integration and validation costs.

Objectives:
• Simplify an autonomous agent architecture by using the same

execution machinery (semantics and implementation) at any layer
• Simplify the integration of autonomous agent software by using a

single communication protocol between all layers

Key Innovation:
• IDEA virtual machine implementing a sense-plan-act loop with real-

time guarantees
• Use of a reactive model-based planner in the inner loop of

execution, with each IDEA agent possibly using a different planner
technology provided it is compatible with the IDEA virtual machine

• IDEA communication protocol consisting of the interchange of task
networks

Description/Schedule

Schedule:

Flight Software

IDEA Architecture

Command
Level

Task
Level

Goal
LevelModel

Model

Model

Idea Agents

DS1 RA Architecture

PS Models

ModelsExec

ModelsMIR

Flight Software

Idea Wrapper

• IDEA is inspired by the Remote
Agent architecture that flew on DS1

• IDEA agent: responsible for
decision at a given level of
abstraction and/or in charge of a
subset of the spacecraft sub-systems

• IDEA agent relay allow: “legacy” software to interact with IDEA
agents by supporting the IDEA communication protocol.

•FY 03:theoretical paper on IDEA computational model, reference
implementation ready for distribution, completion of current
reference application (Remote Agent)

•FY 04: mapping between procedural execution and IDEA
computational model, IDEA agent applications with different
planning technologies; translators/analyzers between different
procedural execution/planning paradigms and IDEA (in both
directions)

Ames
Research
Center

Problems with Large Scale Autonomy
Systems

• Difficulty in programming
– Each subsystem has a distinct “virtual machine” and method

of programming
– A domain specialist needs help from reasoning engine

specialists to program something like Remote Agent

• Difficulty in validation
– At times information needs to be duplicated at different levels
– Different encoding makes validation difficult, e.g., it is not easy

to envision a unified approach to validation applicable to all
levels

• Lack of uniformity with flight software
– Autonomy seen as disposable add on
– What about flight software fault protection?

Ames
Research
Center

Fundamental IDEA Hypothesis

• The only coordination mechanism needed in a
complex control system is:
– An explicit representation of a plan in a plan

database
– An interpreter that integrates sensor information

and goals in the plan database and starts new tasks
– A planner based on sub-goaling (and constraint

propagation)

• This is true at any level of abstraction

Intelligent Distributed Execution Architecture (IDEA)

Ames
Research
Center

“ Now, wait a minute …”

Shakey the robot
1966-1972

Behavior-based robots
1986

Ames
Research
Center

Traditional Arguments against Planning

• Some truths
– Combine simple reactive controllers to build complete

autonomous systems
– Focus on reactivity, i.e., the ability to keep up with a dynamic

world
– Minimally constraining architectural assumptions. Design

behaviors internally as most fit to task.
– Keep architecture “light weight”.

• Some nonsense
– "The world is its own best model.“

• Some problems with the alternative
– Approaches to programming Artificial Insects have not scaled

up to higher cognitive functionalities

Ames
Research
Center

Building control systems as
communicating agents

• Complex control systems designed as networks of
interacting agents

• Each agent displays all functionalities found in Remote
Agent: planning, execution, diagnosis, resource
management.

• All agents will use a uniform, declarative communication
protocol

Agent1

Agent2

Agent3

Control Agenti
Plans
Execute

Diagnose
Manages Resources

Ames
Research
Center

Remote Agent

Planner

Executive

System Software
(e.g., controllers)

MI MR
MIR

Remote
Agent

Goals

Ames
Research
Center

Multi-agent perspective

Mission-Level Agent

System-Level Agent

System Software
(e.g., controllers)

Goals

Device-Level Agent

Ames
Research
Center

Multi-agent perspective

Mission-Level Agent

System-Level Agent

System Software
(e.g., controllers)

Goals

Device-Level Agent

Ames
Research
Center . . .

Model

Plan
Runner

Plan Database

IDEA Virtual Machine

Search
Engine

Search
Control

Reactive Planner

IDEA Comm Wrapper

Agent Relay

...
Goal
Networks

Execution
Feedback

Controlled
System

Controlled
System

Controlling
System

Goal Networks Execution Feedback

Execution mode
communication

Planning mode
communication

Controlling
System

Internal Agent Architecture

Ames
Research
Center

Model

Plan
Runner

Plan Database

IDEA Virtual Machine

Search
Engine

Search
Control

Reactive Planner

Reactive vs. Deliberative Planning

Planner 1
(e.g., observation optimizer)

Planner n
(e.g., mission goal editor)

.

.

.

Internal Agent Processing

Commanded by Plan Runner like
external controlled systems

Ames
Research
Center

Method of Investigation

• Theoretical architectural hypothesis
formulation

• System architecture services implementation
• Application to non-trivial domains

Ames
Research
Center

New Theoretical Insights

• Reactive behavior depends on the state of the reactive planner
during the reaction cycle
– Model this explicitly as internal timelines

• Every return value has an associated communication flag
– Under “reliable and instantaneous communication” hypothesis, allows to

explicitly model response to “too slow” failure state of other control
agents

• “Latency matching” in multi-latency control systems
– Determines how much look-ahead is needed from controlling agent to

correctly control a controlled agent
– Needed for studying “stability” of multi-agent system (“Under which

conditions can a controller keep up with a controlled system?”)
• IDEA is a model of a hybrid synchronous/asynchronous

control/computational system
– Possibility of deep connections with formal models approaches to same

problem
– This is currently at the frontier of what is known in the field of formal

models for distributed systems

Ames
Research
Center

Advances in architeture services

• Plan Service Layer (PSL)
– API providing “glue” between plan runner and plan database/planner
– Implemented services to ensure that a constraint-based planner (EUROPA

based) always operate consistently with execution information
– Ready to generalize PSL to connect with much wider range of planners

• Non-timeline based temporal planners (Kirk)
• Contingent planners (Dave Smith)
• Repair-based planners (ASPEN)
• Non-temporal planners
• Diagnosis and reconfiguration engines (L2, Titan)

• Agent Relay design
– Independent from “message-level layer”
– Two implementations: CORBA and Reid Simmon’s IPC
– Does not assume that recipient or sender is an IDEA agent

Ames
Research
Center

Applications

• Reimplementation of Remote Agent
– Demonstrated interleaving of deliberative planning and execution at

mission-level (Planner/Plan Runner in Remote Agent)
– Planning to standby at the mission level (model-based solution of ad-hoc

Executive script in Remote Agent)
– Finishing up System level model (Executive in Remote Agent)

• Coverage of all subsystems in EXEC working nominal behavior and some
faults

• Preliminary inter-agent Mission/System level communication tests

• PSA
• DS1 launch sequence

– Collaborative work with JPL (Abdullah Aljabri’s group)
• On-board executive for K9 rover

– Summer project by Bernardine Dias (CMU) and Solange Lemai
(LAAS/CNRS)

Ames
Research
Center

K9 Rover

• Pilot

• Obstacle avoidance

• Pantilt

• Vision

• Power

• Fans

• Arm

http://ic-www.arc.nasa.gov/ic/projects/intelligent-robotics/k9/Engineering/index.html

Ames
Research
Center

Implementation of IDEA Model

Ames
Research
Center

Measured latency at execution

0

0.5

1

1.5

2

2.5

3

0 90 180 270 360 450 540 630

•Reactive planner is chronological backtracker without
search control heuristics
•Plan database limited to “two tokens” for each timeline
•Dynamic “amnesia”
•Run on 300MHz Pentium in Linux

Ames
Research
Center

Search cost at each cycle

0

5

10

15

20

25

30

0 200 400 600

time (s)

cycle duration

Number of replanning
steps at each cycle

Ames
Research
Center

Future Work

• Produce theoretical paper on IDEA computational framework
• Produce a reference implementation available for distribution
• Extend to interaction between agents at planning time
• Use of different plan database technologies and planners
• Provide fault-protection for flight software application

– DS1 fault protection re-implementation
• Mapping to procedural execution

– Formal mapping from/to BDI model
– Augmentation/translation with PRS procedural system

• Integration with diagnosis
– Diagnosis = “planning in the past”

• Multi-agent fault-tolerance
– What happens if an agent in the control network must go off line (e.g., it

does not respect a latency guarantee)?
• Look at connection with other areas

– Real-Time Active Database transaction management

